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ABSTRACT: The interaction of a series of water-soluble conjugated polyelectrolytes with
varying backbone structure, charge type (cationic and anionic), and charge density with a
set of seven different proteins is explored by using fluorescence correlation spectroscopy
(FCS). The FCS method affords the diffusion time for a particular CPE/protein pair, and
this diffusion time is a reflection of the aggregation state of the polymer/protein in the
solution. The diffusion time is larger for oppositely charged CPE/protein combinations,
reflecting the tendency toward the formation of CPE/protein aggregates in these systems.
However, by careful analysis of the data, other factors emerge, including possible effects of
hydrophobic interaction in specific CPE/protein systems. The final diffusion time for each
CPE/protein mixture varies and the diffusion time response pattern created by the six-
CPE array for a typical protein is unique, and this effect was leveraged to develop a sensor array for protein identification by using
linear-discriminant analysis (LDA) methods. By application of multimode linear discrimination analysis, the unknown protein
samples have been successfully identified with a total accuracy of 93%.
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■ INTRODUCTION

Conjugated polyelectrolytes (CPEs) composed of ionic
charged groups and a π-conjugated backbone are capable of
water solubility and self-assembly.1−5 Many different types of
CPEs have been synthesized with various conjugated back-
bones, including poly(para-phenylene ethynylene) (p-PPE),6

polythiophene,7 and poly(meta-phenylene ethynylene) (m-
PPE),8 and various ionic groups, such as sulfonate (SO3

−),8,9

carboxylate (CO2
−),10 and quarternary ammonium (NR3

+),11,12

either branched10,12 or linear.8,9,11,13 The diversity in the
polymer structures endows CPEs various hydrodynamic radii or
chain conformations in aqueous solution. For example, meta-
linked (phenylene ethynylene) chains with more than five
repeat units adopt a helical structure in aqueous solution.8,14

Most para-linked (phenylene ethynylene)s with linear ionic
side groups spontaneously aggregate in water.9,13,15 By contrast,
specific CPEs with a high charge density, such as with branched
ionic side chains, are molecularly dissolved as isolated polymer
chains in water.10,12 Thus, in general, it is possible to say that
the charge and structural nature of CPE facilitates controlling
the strength of interaction as well as the distance between CPE
chains and other ionic species in solution.
Interaction between CPEs and proteins in aqueous solution

have been the subject of considerable interest.16−23 On the
basis of studies of optical spectra, it has been inferred that the
“non-specific CPE/protein” interactions cause significant
change in both conformations and photophysical properties
of CPEs.16,17,19,21 For example, Bazan and co-workers found
that an anionic sulfonated poly(para-phenylenevinylene)

(PPV), mixed with small amounts of various proteins, including
positively charged avidin and tau, as well as negatively charged
bovine serum albumin (BSA) and pepsin A individually,
resulted in several-fold increase in fluorescence intensity from
the polymer. These effects are attributed to interactions
between the anionic PPV and the proteins via electrostatic
and hydrophobic forces.16 Bunz and co-workers also reported
that BSA could enhance the fluorescence of carboxylate-
substituted CPEs, while a series of proteins, such as histone,
lysozyme, myoglobin, and hemoglobin quenched the fluo-
rescence of CPEs due to the formation of a complex.21

Meanwhile, some sensing assays have been developed for
protein recognition by employing fluorescence intensity change
pattern of CPEs.19,21,24

In the present study, we explore the aggregation state change
of CPEs induced by interaction with various proteins by
focusing on the diffusion dynamics of the resulting CPE/
protein aggregates. In previous work, it has been shown that the
conformation state and size change of fluorescent macro-
molecules can be monitored by fluorescence correlation
spectroscopy (FCS).18,25−28 FCS is based on analysis of the
fluorescence fluctuation signals from fluorescent particles in a
confocal sample volume.29 The technique provides insight
regarding diffusion behavior of the molecules at the single
molecule (or particle) level in solution, which is closely related
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to the molecular weight, size and conformation of fluorescent
species. Accordingly, the diffusion behavior change reflects the
chemical or physical change in the fluorophores as well as the
surrounding environments.30,31 FCS has previously been
employed to study the conformation change of many large
molecules. Specifically, Borsch and co-workers used FCS to
monitor protein folding and unfolding transitions.27 Schwille
and co-workers conducted research on the fluorescence
fluctuations of green fluorescence protein (GFP) by FCS and
revealed the relationship between structural changes of GFP
and its fluctuations in emission, making it possible to probe the
local pH.25 Waldeck and co-workers used FCS to uncover the
three regimes in the hydrodynamic radius for complexes
formed from an anionic CPE and a surfactant in aqueous
solution.18 In recent work, we have applied FCS to investigate
the structure and aggregation of a dye-ligand intercalation
complex formed between a helical CPE, a biotin-chromophore
complex and avidin.32 This previous work demonstrates that
FCS is a promising tool for monitoring the aggregation state
and size change of fluorescent conjugated polyelectrolytes as
they interact with biopolymers in solution.
The current study explores how the aggregation state or size

of six CPEs change when they are exposed to solutions of seven
different types of proteins, which is accomplished by measuring
their diffusion time through FCS and analyzing their diffusion
behavior change. If the charges of the CPEs and proteins are
opposite, the electrostatic attraction induced aggregation can
cause the increase in diffusion time of CPEs; by contrast, if the
CPE and protein have the same charge type, deaggregation will
occur for CPEs apparently due to repulsive interaction between
two macromolecules, resulting in a decrease in diffusion time.
Meanwhile, other factors including hydrophobic interaction,
charge density, molecular weight, and polymer backbone
structure also influence the final sizes and conformations of
CPEs. As a result, the final diffusion time for each CPE-protein
mixture varies and the diffusion time response pattern created
by the six-CPE array for a typical protein is unique, which can
be utilized for protein recognition and distinction.
By taking advantage of this unique interaction pattern, a

sensor array comprising six CPE probes with various charge
properties, structure characteristics and molecular structure is
developed for seven proteins, which also have various
isoelectric points (pI), molecular weights, and structures.
Each type of protein can be classified via linear discriminant
analysis (LDA) of the FCS signal responses. The combination
of sensor array with LDA has been applied in many sensing
strategies.19,33−35 In the current paper, multiple LDA
operations are employed for training the FCS-based data
matrix and creating a series of discriminant spaces/plots for
classifying different proteins. Then, the technique readily
identifies a series of unknown protein samples with recognition
accuracy ∼93%. Unlike the conventional sensors requiring
specific label or marker design and synthesis, the CPE probes
do not require covalent attachment to a target but undergo self-
assembly via nonspecific interaction. This novel protein sensor
array will make contribution to the medical diagnostics or
clinical research,36−39 where the detection of more than one
protein in one single technical setting is highly preferred.

■ EXPERIMENTAL SECTION
Materials. Avidin from egg white (avidin, A9275), lysozyme from

chicken egg white (LYZ, L6876), peroxidase from horseradish, type I
(HRP, P8125), phospholipase D from Arachis hypogaea (peanut), type

II (PLD2, P0515), hexokinase from Saccharomyces cerevisiae, type III
(HK3, H5000), albumin from bovine serum (BSA, A2153), glucose
oxidase from Aspergillus niger (GOx, G7141), Coomassie brilliant blue
G-250, phosphoric acid, and methanol (HPLC grade) were purchased
from Sigma-Aldrich. The synthesis procedures and characterization of
P1,40 P2,8 P3,9 P4,13 P5,11 and P613 have been previously reported.
All sample solutions were prepared using water that was distilled and
purified by a Millipore purification system (Millipore Simplicity
ultrapure water system). Buffer solutions were prepared with reagent-
grade materials (Fisher). All concentrations of polymers are provided
in polymer repeat unit concentration (PRU). Concentrated stock
solutions of the CPEs and proteins were prepared separately in buffer
to obtain the desired concentrations. Each single CPE/protein pair
was mixed well before FCS measurement. The unknown protein/CPE
samples were prepared in the same manner as the known samples, but
they were prepared by an assistant so that the sample identity was
unknown during the analysis. All assays were conducted in 5 mM
phosphate buffer, pH 7.2 at room temperature. The Bradford protein
assay was conducted according to a literature procedure.41

Instrumentation. The measurements were performed on an FCS
setup constructed in house. The FCS system was developed by using
an Olympus IX70 epi-fluorescence microscope platform. A 405 nm
diode laser (Coherent, CUBE) was employed as the excitation light
source. After passing a spatial filter, a 405 nm single mode fiber, and a
fiberport collimator, the laser beam was expanded and collimated to
4.4 mm in diameter. The beam was then focused onto the sample
though an objective lens (Olympus, 60× , numerical aperture 1.2,
water immersion), forming a femtoliter confocal volume. The
fluorescence was collected by the same objective, separated from the
excitation light by a dichroic mirror (Chroma, 405 nm), then split by a
50/50 cube splitter and directed into an avalanche photodiode (APD,
PerkinElmer, SPCM-AQR-14-FC) through a 50 μm-inner diameter
optical fiber after passing through a 500 ± 20 nm bandpass filter.
Chambered coverglass (Thermo Scientific, Nunc, Lab-Tek) was used
as the sample container. In each FCS experiment the fluorescence
fluctuations were measured for 1−2 min. Free fluorescein (D = 3.00 ×
10−10 m2·s−1)42 was used for calibration. Autocorrelation was
processed by a hardware correlator (correlator.com, Flex02-12D).

UV−visible absorption spectra were measured in 1 cm light path
disposable polystyrene cuvettes or 1 mm light path quartz cuvettes on
a UV−vis spectrophotometer (Shimadzu, UV-1800).

Theory of Fluorescence Correlation Spectroscopy. FCS
focuses on the emission fluctuations from the fluorophores that are
diffusing through the excitation volume, which are characterized by an
autocorrelation function, G(τ):30
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where δF(t) represents the fluctuation of the fluorescence signal F(t)
at time t. An explicit expression for G(τ), representing a single-
component solution in a three-dimensional (3D) space, is used for
data analysis.31,43−45
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In this expression ω is the structure parameter, which equates to (ωz/
ωr), where ωz is the longitudinal radius and ωr is the transversal or
waist radius of the confocal volume, N is the average number of
fluorescent molecules in the detection volume, and τD is the average
time spent by a fluorescent molecule in the detection volume.

■ RESULTS AND DISCUSSION
Fluorescence Correlation Spectroscopy Diffusion

Times of CPE/Protein Complexes. A set of six CPEs
consisting of three with anionic and three with cationic side
chains were chosen for exploring their interactions with
proteins. The CPE structures with their abbreviations are
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shown in Scheme 1, and their estimated molecular weights are
listed in Table 1. Among those CPEs, P1 is not aggregated in
aqueous solution due to its bulky and highly charged side
chains that prevent hydrophobic interchain interactions by
increasing the electrostatic repulsion between polymer chains.
The other five CPEs are aggregated to various extents in water
due to the hydrophobic effect and π−π stacking interactions.
The cationic CPEs P4 and P6 are less aggregated than P3 due
to their relatively long cationic bisalkylammonium side groups
that provide a steric barrier between the π-conjugated chains.13

Anionic CPE P2 with meta-linked backbone self-assembles into
a helical conformation in aqueous solution, and its helix can
serve as a host for small molecule intercalators.8,14,32,46

Although it is not possible to apply gel permeation
chromatography to measure the absolute molecular weights
(MW) for P2-P6 due to their amphiphilic nature, other

techniques have been used to estimate their MWs,8,9,13 and the
results are displayed in Table 1. Due to their various molecular
weights and conformations, this set of six CPEs displays
different diffusion behavior as reflected by the FCS diffusion
time summarized in the bottom row of Table 1. It is seen that
CPEs with higher molecular weight generally display longer
diffusion times
Seven proteins were used in this work and their properties

are summarized in Table 2 along with the acronyms that are
used herein. Avidin and LYZ have isoelectric point (pI) > 7,
exhibiting positive charge in neutral solution; PLD2, HK3,47

BSA, and GOx have pI < 7, so they are negatively charged in
neutral solution. However, for the protein HRP, due to its
complexity, it is difficult to determine its pI value.48 Those
proteins also feature different molecular weights varying from
14 to 200 kDa and distinct structural characteristics.

Scheme 1. Chemical Structures of Six Conjugated Polyelectrolytes

Table 1. Properties of Conjugated Polyelectrolytes

P1 P2 P3 P4 P5 P6

estimated MW (kDa) 11.0 ∼40.0 ∼100.0 7−70 n/a 7−70
τd (10

−5 s)a 8.4 ± 0.9 29.4 ± 3.0 101.3 ± 25.9 21.7 ± 3.9 27.3 ± 3.1 24.0 ± 8.6
charge on PRU 6(−) 1(−) 2(−) 4(+) 2(+) 4(+)

aDiffusion times (τd) measured in 5 mM HEPEs buffer, pH 7.2, room temperature by FCS.
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To quantitatively test the interaction between the CPEs and
proteins, all the experimental conditions including concen-
trations of both CPEs and proteins, ionic strength, and pH of
buffer solution (pH = 7.2) are fixed. The concentrations of
proteins are determined through Bradford protein assay, a dye-
binding assay in which the color change of dyes occurs in
response to various weight concentrations of protein.49 Each of
the six CPEs is mixed with the seven proteins individually in 5
mM HEPEs buffer with final [CPE] = 500 nM (in repeat units)
and [protein] = 2 μg/mL (this concentration was carefully
selected so that the signal-to-noise ratio was adequate and the
signal was within the linear range of the detector). Twenty
replicates are prepared for each CPE-protein pair and all the
samples are submitted for FCS measurement in sequence.
Figure 1 illustrates a typical FCS measurement result for the

cationic CPE, P4, with and without proteins. (Note that the

peaks that appeared on the curves, τ = 0.01−2 s, were artifacts
in the FCS system.50,51) Based on the FCS curves, the mixtures
of P4 with avidin (τd = 20.7 × 10−5 s) or LYZ (τd = 22.5 × 10−5

s), whose pI value >10, have approximately the same diffusion
times as pure P4 (τd = 21.7 × 10−5 s). By contrast, the other
five proteins, whose pI average < 7, to various degrees, induce
the aggregation of P4 and a dramatic increase in the diffusion
times is observed. The order for the diffusion rate of P4/
proteins is HRP > BSA > HK3 > PLD2 > GOx with increasing
τd = 1.95, 5.66, 7.80, 13.0, and 219.00 ms, respectively. Due to
the polydisperse nature of the aggregates, the FCS curves are a
combination of several single-species curves with different
diffusion times. Nevertheless, the fitting eq 2 is still applied and
an average diffusion time for each CPE/protein aggregate is
thereby obtained. As stated above, HRP and HK3 are the
mixtures of several isozymes, whose FCS curves are more
complicated and therefore are difficult to fit by the single

species fitting equation. The fluorescence fluctuation profiles
for each mixture are displayed in Figure 2. The more intense
and broader peaks correspond to the larger aggregates passing
through the excitation volume which lead to longer diffusion
times as shown in Figure 1. Those time-dependent profiles also
provide the evidence for heterogeneity or size multidistribution
of aggregated CPEs.
The FCS results for all of the samples are shown as a bar

graph in Figure 3 in terms of log (τd/τ0), where τd and τ0 are

the diffusion times of CPE with and without protein,
respectively. The error bars represent the calculated standard
deviation for 20 individual diffusion time replicate measure-
ments for each sample. Figure 4 is the 3D column graph for the
FCS results. The row with the same color corresponds to a
given protein and the charge type for each species is embodied

Table 2. Properties of Proteins

abbreviation protein
MW
(kDa) pI

avidin avidin 66 10
LYZ lysozyme 14 11.0
HRP horseradish peroxidase, type I 44 3−9
PLD2 phospholipase d, type II 200 4.65
HK3 hexokinase type III 54 PI:5.25 PII: 4
BSA bovine serum albumin 66 4.7
GOx glucose oxidase 160 4.2

Figure 1. Normalized FCS correlation function curves for P4 without
protein (■) and with Avidin (●), LYZ (▲), HRP (▼), HK3 (▶),
BSA (◆), PLD2 (◀), and GOx (★) in 5 mM HEPEs buffer pH 7.2.
Black solid lines are the single species fitting curves.

Figure 2. Top: Fluorescence intensity fluctuation profile for P4
without and with seven proteins. Bottom: enlargement of the
fluctuation profile for P4 with seven proteins. ([P4] = 500 nM,
[protein] = 2 μg/mL in 5 mM HEPEs buffer pH 7.2)

Figure 3. Log (τd/τ0) response 2-dimensional bar plot of six CPEs
mixed individually with seven proteins. Bar height is the average value
of 20 replicates for each CPE/protein pair.
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in their abbreviations by color: negative charge is black, positive
charge is red, and the protein HRP with mixed pI is blue.
There are several clear trends that emerge upon inspection of

the data in Figures 3 and 4. First, it is clear that the diffusion

time increases (i.e., log (τd/τ0) > 0) for the oppositely charged
CPE/protein pairs, such as LYZ/P1 or PLD2/P4, due to the
electrostatic attraction induced formation of polymer/protein
aggregates. In sharp contrast, when the charge of the protein
and CPE are the same, especially for the pairs of anionic CPEs
and proteins with pI < 7 such as PLD2/P2 or HK3/P3, the
mixtures exhibit shorter diffusion time compared to the CPE
alone (i.e., log (τd/τ0) < 0). Apparently the Coulombic
repulsion between the two negatively charged macromolecules
disrupts the aggregation of CPEs. For the cationic CPEs with
positively charged proteins, such as LYZ/P5 or P6, some
aggregation appears with the average log (τd/τ0) varying in the
range 0−0.1. This is likely due to a hydrophobic interaction
between the CPE chains and the protein.20

Note that the much larger error bars observed for HRP/CPE
pairs (e.g., HRP/P5) is presumably due to the complexity in
the mixture of protein isozymes with various pI values, which
greatly single HRP out from other proteins. Based on the
average log (τd/τ0) values for HRP with various CPEs, HRP is
able to induce aggregation when mixed with cationic CPEs,
while disrupting aggregation when mixed with anionic
aggregated CPEs. Therefore, HRP displays anionic character-
istics in neutral pH.
Besides electrostatic or hydrophobic interaction, other factors

may also influence the final response. For example, the log (τd/
τ0) for anionic P2 with cationic LYZ (pI = 11) is much larger

Figure 4. Log (τd/τ0) response 3-dimensional column pattern of six
CPEs mixed individually with seven proteins. Column height is the
average value of 20 replicates for each mixture. In this presentation
some of the columns correspond to negative values, that is, log(τd/τ0)
< 0. In order to make the negative values clear, the columns are shaded
dark for log(τd/τ0) ∼ 0. Therefore, for columns with dark color at the
bottom log(τd/τ0) > 0, and for columns with dark color at the top
log(τd/τ0) < 0.

Scheme 2. Training Results for Multiple LDA Operation of Diffusion Time Response for Six CPE Probes against Seven
Proteinsa

a20 replicates for each probe-target pair.
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compared to that of P2 with avidin (pI = 10). We attribute this
phenomenon to the high charge density of LYZ, which has the
smallest molecular weight (44 kDa) but highest pI value.
However, when considered the cationic P4 with a series of
anionic proteins, the molecular weight of the protein seems to
have an impact on the final diffusion time change. The value of
log (τd/τ0) for P4/proteins increases roughly as the increase of
the molecular weight of the protein: HRP (44 kDa) < HK3 (54
kDa) ≈ BSA (66 kDa) < PLD2 (200 kDa) < GOx (160 kDa).
However, this trend does not apply to other types of oppositely
charged CPE/protein mixtures.
In addition to the influence of the protein, the properties of

the polymers also affect the diffusion time of the CPE/protein
mixtures. For example, the thiophene containing CPEs (P4 and
P5) appear to form larger aggregates compared to the P6,
which contains only phenylene repeat units. In particular, when
P4 is mixed with oppositely charged proteins (BSA, HK3, PLD,
GOx), the resulting log (τd/τ0) values are larger than those for
P6 with the same proteins. This finding is consistent with the
previous reports that the thiophene containing CPEs appear to
have a larger hydrophobic character compared to the phenylene
analogues.52 The molecular structure and conformation of the
polymer backbone may also influence the interaction between
CPEs and proteins. For instance, the diffusion time for P2, a
helical CPE, mixed with oppositely charged proteins (LYZ,
avidin), is greater than that of P3, which has a linear backbone,
even though P3 has a higher MW than P2 does. Consequently,
the final signal response is affected by many elements including
charge type, charge density, molecular weight, and structure
property of both proteins and CPEs. It is difficult to

deconvolute each part just relying on the FCS measurements.
We are pleased to find that the six CPEs display a unique signal
response pattern for each protein, which is beneficial for
identification of proteins as shown in the next section.

Protein Sensing: Linear Discriminant Analysis of FCS
Diffusion Times for Protein/CPE Mixtures. In order to
provide more insight into the structure−property relationships
for the CPE/protein mixtures, we carried out studies aimed at
subjecting the FCS results to linear discriminant analysis (LDA,
the details of the theory and procedures for LDA can be found
in the literature).53,54 As outlined below, this work led to the
development of a novel CPE-FCS based method allowing the
identification of a protein in an unknown sample. As can be
seen below, a single LDA operation on the entire set of data
was unable to afford a high degree of accuracy due to the fact
that a single LDA was originally developed for two-class
problems and it is suboptimal if multiple classes are
considered.55 Thus, we applied a sequence of LDA steps
afterward to multiple subgroups of proteins and generated
subspaces that have higher overall classification power.56

The details about the multiple LDA process can be found in
Scheme 2. Initially, we used the full set of log (τd/τ0) values to
construct a matrix consisting of 6 CPEs × 7 proteins × 20
replicates for LDA analysis (Supporting Information Table S1).
The eigenvectors that maximize the ratio of between-class
variance to the within-class variance are obtained through LDA
implemented as a script in Matlab. Then the three most
significant eigenvectors (carrying 82.5, 9.31, and 5.77% of the
discriminant information, respectively, Supporting Information
Table S3) are used to plot sample data in a 3D discriminant

Figure 5. Linear discriminant analysis factor spaces for the diffusion time response patterns obtained with six CPE probes sensor array against (a)
seven proteins (avidin, LYZ, HRP, PLD2, HK3, BSA, GOx), (b) four proteins (HRP, PLD2, HK3, BSA), (c) three proteins (HRP, PLD2, HK3), (d)
two proteins (HRP, PLD2). Twenty replicates for each CPE-protein pair.
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space as shown in Figure 5a. The 6 × 7 × 20 samples are
presented with different colors denoting the different proteins.
In principle, each protein should occupy a specific region in the
3D space and the different proteins should be well separated
from each other. As displayed in Figure 5a and Scheme 2, three
protein groups of avidin, BSA, and GOx are well classified with
individual accuracy ≥95%. However, mingling occurs among
the categories of HRP, PLD2, HK3, and BSA with error to be
4/20, 7/20, 7/20, and 5/20, respectively, resulting in the total
classification accuracy 83%. A second LDA operation is applied
using only the subsets of data that belong to HRP, PLD2, HK3,
and BSA. A new discriminant space specifically for these four
proteins is created and the improvement in the separation of
groups can be easily observed (Figure 5b). The errors are
reduced to be 2/20, 2/20, 2/20, and 1/20 for HRP, PLD2,
HK3, and BSA, respectively, with an increased total accuracy of
94% for seven proteins (Scheme 2). More LDA operations are
continuously applied for those groups with relatively lower
individual training accuracy (<95%). As shown in Figure 5c, d
and Scheme 2, after four LDA operations, the total classification
accuracy for the entire seven proteins is 98%, much higher than
the result of a single LDA operation, that is, 83%. By utilizing
multiple subspaces instead of a single large space, the protein
discriminant method is well established (four sets of
eigenvalues are summarized in Supporting Information Table
S3). We note that this discrimination method is typically
designed for the experimental conditions in which [protein] = 2
μg/mL. A series of similar measurements for [protein] = 1 μg/
mL and 5 μg/mL were also conducted and different
discrimination patterns were obtained for each concentration
(data not shown). However, the lower concentration ([protein]
= 1 μg/mL) led to lower signal-to-noise ratio, while high
concentration ([protein] = 5 μg/mL) resulted in a very high
signal (which could exceed the detector linear response region).
Consequently, these two target concentrations were not
selected for our protein sensing application. Nevertheless, the
limit of detection for our sensing array is equal to or below 1
μg/mL.
Succeeding in classifying known samples, we next focus on

detection and identification of unknown protein samples
(Supporting Information Table S2). Forty-two artificial protein
samples prepared by a second researcher were subjected to the
same protocol as described above, including determining
concentration through Bradford protein assay, mixing proteins

with 6 CPE probes individually, adjusting concentration to
[CPE] = 500 nM and [protein] = 2 μg/mL, conducting FCS
measurements and generating the final data matrix.
As processed by first level LDA operation, the entire

unknown samples are projected to the discriminant space
built up in the above training process. As followed the theory of
LDA,53,54 in the created 3D discriminant space, the
Mahalanobis distances of each unknown spot in the space to
the centroid of each class are calculated and these unknown
spots are assigned and identified according to the shortest
Mahalonobis distance. Based on the classification accuracy
obtained in the training process, the samples that were assigned
to the groups of avidin, LYZ, and GOx are believed to be
identified with accuracy >95%. The subset data belonging to
those three proteins are removed from the entire matrix, and
the rest of the matrix is resubmitted for a second level LDA
operation and processed in a similar manner. By using this
sequence of four LDA operations, all of the unknown samples
are identified. The verification is assisted by the researcher who
prepares unknown samples, and the resulting error report is
shown in Scheme 3. Total identification accuracy is improved
from 88% (failure test: 1 for HRP, 1 for HK3, and 3 for BSA)
for a single LDA operation to 93% (failure test: 1 for HRP and
2 for BSA) for a multiple LDA operation (final failure test
samples are marked with stars in Supporting Information Table
S2).
Based on the LDA results discussed above, we find that

proteins with pI > 7, such as avidin and LYZ, are easily
separated from the rest of the group of proteins with
classification/identification accuracy ∼100% for both known
and unknown samples, followed by GOx (pI = 4.2) with
classification/identification accuracy 95% and 100% for known
and unknown samples, respectively. HRP, PLD2, HK3, and
BSA are harder to distinguish, likely due to their similarity in
charge properties, resulting in similar interaction with each CPE
and requiring further LDA processing to allow their resolution.
The complexity in the pI value for multi-isozyme mixture, such
as HRP, makes the data the most spread out in the discriminant
spaces, which introduces more difficulty in their classification
and identification. Nevertheless, after applying multiple LDA,
those proteins are still can be classified and identified with
relatively high accuracy.
Based on the discussion above, the separation of proteins

with opposite charge type is the easiest to accomplish,

Scheme 3. Test Results for Multiple LDA Operation of Diffusion Time Response for Six CPE Probes against Forty-Two
Unknown Protein Samples
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suggesting the charge type plays the most significant role in the
interaction between CPEs and proteins as well as the
recognition of proteins. While further discriminant between
proteins with similar charge properties needs more analysis on
the minor differences in data matrix. Those differences probably
arise from hydrophobic interaction, molecular structure, charge
density or molecular weight of both CPEs and proteins. As
discussed above, those factors can also make their own
contributions to the differentiation of proteins.

■ CONCLUSION

In sum, we have conducted a systematic investigation on the
aggregation state/size change of CPEs induced by nonspecific
interaction between various CPEs and proteins from single
particle diffusion times as measured by fluorescence correlation
spectroscopy. Many factors including charge type, charge
density, hydrophobic interaction, molecular weight and
structure of CPEs or proteins play a role in determining the
final diffusion behaviors of CPEs, among which, charge type
plays the essential role. The patterns of log (τd/τ0) signal
responses generated by six CPEs are distinct for different
proteins, giving rise to a novel CPE based sensor array for
proteins. By applying multivariate pattern recognition chemo-
metrics, LDA, in a multiple operation mode, a series of
discriminant spaces is created and seven different proteins have
been successfully classified. Then forty-two unknown samples
are further tested and a relatively high identification accuracy
93% is obtained, which verifies the robustness and feasibility of
this novel sensor array. This type of sensing strategy establishes
a new protein sensing platform where the proficient
manipulation and strong biological background are not
required for operators. Further effect can be made upon the
optimization of probes including improving the purity of the
polymer samples, conjugating more versatile functional groups
to the backbone or introducing new CPE probes. Moreover,
the development of the sensor array in more complicated
biological environments is necessary to eliminate potential
interference and enhance their feasibility in real world
applications.
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